Remote Sensing in the Cloud – Deriving chlorophyll concentration using HICO IPS

Continuing our review of the algorithms currently implemented in the cloud-based HICO Image Processing System (HICO IPS), here we provide an overview of the two algorithms utilized for deriving estimates of chlorophyll concentration in oceanic water.


Objective – Implement multiple algorithms for estimating chlorophyll concentration, as well as a methodology for evaluating the difference between these algorithms.

Algorithms – Derive estimates of surface chlorophyll-a concentration using one of two ocean color algorithms, OC4 (O’Reilly et al. 2000) or OCI (Hu et al. 2012); or for comparison, the difference between these two algorithms (OC4 – OCI). These algorithms first perform spectral resampling of the HICO hyperspectral data to the multispectral SeaWiFS bands on which the algorithms are based.

Inputs – User specified HICO scene, with optional region-of-interest; optional NDWI land/water mask, with user adjustable NDWI threshold; and specification of desired chlorophyll algorithm.

HICO IPS Chesapeake Bay

Output – Surface chlorophyll-a concentration (mg/m^3) depicted using a blue-red color ramp where blue represents low chlorophyll concentration and red represents high concentration. If the NDWI land/water mask was selected, then chlorophyll concentrations are only calculated and mapped for the water pixels (as is logical).

HICO IPS Chesapeake Bay Chlorophyll

Try it out today for yourself:


Related posts

Introducing the HICO Image Processing System

Calculating a land/water mask using HICO IPS

Evaluating water optical properties using HICO IPS

Characterizing shallow coastal environments using HICO IPS



Hu C, Lee Z, Franz BA (2012) Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference, Journal of Geophysical Research, vol. 117(C1), 25 pp.

O’Reilly JE, Maritorena S, O’Brien MC, et al. (2000) SeaWiFS postlaunch calibration and validation analyses, Part 3, NASA Technical Memorandum 2000-206892, vol. 11, 49 pp.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s