Astronaut Photography – Your access to stunning views from space

Astronauts have busy schedules in space – system operations, maintenance, repairs, science experiments – but did you know they also acquire hundreds of photos during each mission?

Reid Wiseman , Astronaut Photography

From stunning views of Earth’s natural features to glimpses of your favorite city at night, and from pure artistry to applied science, these photos offer a remarkable perspective of our planet’s surface as well as a valuable historical record of how and where our planet is changing.

There are now two great resources available for viewing this photography:

Both websites provide access to thousands of photos, are free to use, allow users to search photos or browse by category, and even provide options to download images for your own use (but be sure to read through the conditions of use on both websites).

We’ve spent countless hours browsing through these stunning image collections, and encourage you to take a look for yourself.

We hope you enjoy!

Gateway to Astronaut Photography of Earth

“The Gateway to Astronaut Photography of Earth hosts the best and most complete online collection of astronaut photographs of the Earth from 1961 through the present. This service is provided by the International Space Station program and the JSC Earth Science & Remote Sensing Unit, ARES Division, Exploration Integration Science Directorate.” – http://eol.jsc.nasa.gov/

Windows on Earth

“Windows on Earth is an educational project that features photographs taken by astronauts on the International Space Station.  Astronauts take hundreds of photos each day, for science research, education and public outreach.  The photos are often dramatic, and help us all appreciate home planet Earth. The site is operated by TERC, an educational non-profit, in collaboration with the Association of Space Explorers (the professional association of flown astronauts and cosmonauts), the Virtual High School, and CASIS (Center for Advancement of Science in Space).” – http://www.windowsonearth.org/

Windows on Earth featured

Advertisements

HyPhoon – Announcing Launch of Geospatial Data Sharing Service

HySpeed computing is proud to announce the release of HyPhoon, a community gateway for the access and exchange of datasets, applications and knowledge.

The inaugural dataset offered through HyPhoon is from Heron Reef, Australia, provided courtesy of the Center for Spatial Environmental Research at the University of Queensland.

Heron ReefHeron Reef (32 km^2) is located at the southern end of the Great Barrier Reef and has been a focus of coral reef research since the early 1900s. The reef contains Heron Island, which hosts one of the longest running, most significant, coral reef research stations in the world. One of the first large scale reef mapping projects in the world was developed on Heron Reef in the 1980s. Since the late 1990s the Biophysical Remote Sensing Group at the University of Queensland has developed and tested remote sensing applications on Heron Reef with collaborators from around Australia and the rest of the world.

Data offered for the Heron Reef dataset currently includes:

  • mosaic of 2002 CASI hyperspectral imagery at 1 m spatial resolution
  • field transects from 2002 of substrate cover for 3,586 photos
  • depth measurements from 2007 for 7,462 individual soundings
  • bathymetric map derived from the 2002 CASI imagery
  • habitat map derived from 2007 QuickBird imagery
  • geomorphic zonation derived from 2007 QuickBird imagery

This data is offered using the Creative Commons Attribution license (CC BY 3.0 Unported), which “lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.”

The data from HyPhoon is available for the community to use in research projects, class assignments, algorithm development, application testing and validation, and in some cases also commercial applications. In other words, in the spirit of encouraging innovation, these datasets are offered as a community resource and open to your creativity.

We welcome your thoughts for new data you would like to see included, and also encourage you to contribute your own data or derived products to showcase on HyPhoon.

To access HyPhoon: http://hyphoon.hyspeedcomputing.com/

HyPhoon

Open-Access Scientific Data – A new option from the Nature Publishing Group

In May 2014 the Nature Publishing Group will be launching a new online publication – Scientific Data – which will focus on publishing citable descriptions of open-access data.

There are many benefits to open-access data sharing, including enhanced collaboration, greater research visibility, and accelerated scientific discovery. However, the logistics of providing efficient data storage and dissemination, and ensuring proper citations for data usage, can be a challenging process if undertaken individually. Fortunately there are a growing number of government sponsored and privately funded data centers now providing these services to the community.

As one of the newest offerings in this domain, Scientific Data is approaching open-access through the publication of Data Descriptors: “peer-reviewed, scientific publications that provide detailed descriptions of experimental and observational datasets.” Data Descriptors are “designed to be complementary to traditional research publications” and can include descriptions of data used in new journal publications, data from previously published research, and standalone data that has its own intrinsic scientific value.

Scientific Data

Scientific Data’s six key principles (source: nature.com)

Because Scientific Data is open-access, there are no fees associated with user access to the Data Descriptors. However, to support and facilitate this open-access, authors must pay an article processing charge for each Descriptor that is published. Authors have the option of publishing their Data using one of three different Creative Commons licenses: Attribution 3.0 Unported (CC BY 3.0), Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0), or Attribution-NonCommercial-Share Alike 3.0 Unported (CC BY-NC-SA 3.0). Each license requires users to properly cite the source of the data, but with varying levels of requirements on how the data can be used and re-shared.

Note that under this model Scientific Data is only publishing the Data Descriptors, and authors must still place the data itself in approved publically available data repositories. This helps ensure data is made readily available to the community without restriction. Approved repositories within the environmental and geosciences currently include the National Climatic Data Center, the NERC Data Centres, and PANGAEA. However, authors can also propose additional data repositories be included in this list.

Scientific Data is now accepting submissions, and offering early adopting authors a discounted article processing charge.

For more info on Scientific Data: http://www.nature.com/scientificdata/

Data Management and Broader Impact – Satisfying the new NSF Merit Review criteria

NSF LogoEarlier this year the National Science Foundation released an updated version of the Merit Review process, which among other items includes modifications to the criteria used to assess Broader Impact. The following explores a few ideas on how data management strategies can be leveraged towards expanding your broader impact.

The fundamental purpose of the Merit Review process is to ensure that proposals are reviewed in a fair and equitable manner. Recently, after more than a decade since the last in-depth review of these criteria, a task force was established in 2010 to evaluate and revise the principles and descriptions of the Merit Review process. A final report was published by the task force in 2012, and the new criteria have been in effect for all NSF proposals submitted since January 2013.

As stated in the Proposal and Award Policies and Procedures Guide, “the Intellectual Merit criterion encompasses the potential to advance knowledge” and “the Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.” While previous guidelines required proposals to address intellectual merit and broader impact within the one-page summary preceding the main proposal, the new guidelines are more explicit, requiring proposers to now include individual stand-alone statements on intellectual merit and broader impacts within the Project Summary. Additionally, proposers must also include a specific section within the Project Description that directly addresses the broader impact of the proposed research.

Keeping in mind that proposals also require a supplemental document describing your Data Management Plan, consider the potential benefits and advantages of interconnecting your data management strategy with your objectives for achieving broader impact. For example:

  • Data sharing. Data that is openly shared with the community can be utilized by multiple researchers for a variety of applications and thus have greater impact than just a single project. Data sharing also increases the awareness of and number of publications citing the research that created the data.
  • Class development. Project data that is utilized for class development and classroom exercises expands impact related to student engagement and education. Student involvement can also be extended to incorporate different aspects of data collection and processing tasks.
  • Learning modules. The development of training tools and learning modules based on project data can add even greater dimension to the impact on education, particularly when shared openly with the greater scientific community.
  • Additional projects. Utilizing data across multiple projects, as well as for multiple proposal efforts, increases impact across a greater range of scientific objectives. Exploring alternative uses for data can also spur new research ideas and encourage interdisciplinary project development.

Data can be extremely valuable, so be sure to leverage its full potential when proposing new projects and expanding the impact of your current research. It benefits both you and the community.

This is Part 3 of a discussion series on data management and data sharing related to government funded research. Visit Part 1 and Part 2 to read the earlier installments of this storyline.

For more information on the NSF Merit Review process: http://www.nsf.gov/bfa/dias/policy/merit_review/

Open Access Spectral Libraries – Online resources for obtaining in situ spectral data

Coral SpectraThere are many different analysis techniques used in remote sensing, ranging from the simple to complex. In imaging spectrometry, i.e. hyperspectral remote sensing, a common technique is to utilize measured field or laboratory spectra to drive physics-based image classification and material detection algorithms. Here the measured spectra are used as representative examples of the materials and species that are assumed present in the remote sensing scene. Spectral analysis techniques can then be used to ascertain the presence, distribution and abundance of these materials and species throughout an image.

In most cases the best approach is to measure field spectra for a given study area yourself using a field-portable spectrometer; however, the time and cost associated with such fieldwork can oftentimes be prohibitive. Another alternative is to utilize spectral libraries, which contain catalogs of spectra already measured by other researchers.

Below are examples of open access spectral libraries that are readily available online:

  • The ASTER Spectral Library, hosted by the Jet Propulsion Laboratory (JPL), contains a compilation of three other libraries, the Johns Hopkins University Spectral Library, the JPL Spectral Library and the USGS Spectral Library. The ASTER library currently contains over 2400 spectra and can be ordered in its entirety via CD-ROM or users can also search, graph and download individual spectra online.
  • The SPECCHIO Spectral Library is an online database maintained by the Remote Sensing Laboratories in the Department of Geography at University of Zurich. Once users have registered with the system to create an account, the SPECCHIO library can be accessed remotely over the internet or alternatively downloaded and installed on a local system. The library is designed specifically for community data sharing, and thus users can both download existing data and upload new spectra.
  • The Vegetation Spectral Library was developed by the Systems Ecology Laboratory at the University of Texas at El Paso with support from the National Science Foundation. In addition to options to search, view and download spectra, this library also helpfully includes photographs of the actual species and materials from which the data was measured. Registered users can also help contribute data to further expand the archive.
  • The ASU Spectral Library is hosted by the Mars Space Flight Facility at Arizona State University, and contains thermal emission spectra for numerous geologic materials. While the library is designed to support research on Mars, the spectra are also applicable to research closer to home here on Earth.
  • The Jet Propulsion Laboratory is currently building the HyspIRI Ecosystem Spectral Library. This library is still in its development phase, and hence contains only a limited number of spectra at this time. Nonetheless, it is expected to grow, since the library was created as a centralized resource for the imaging spectrometry community to contribute and share spectral measurements.

It is doubtless that other spectral libraries exist and that many thousands of additional spectra have been measured for individual research projects. It is expected that more and more of this data will be available online and more uniform collection standards will be adopted, particularly as airborne and space-based hyperspectral sensors continue to become more prevalent.

Searching for other remote sensing data resources? Check out these earlier posts on resources for obtaining general remote sensing imagery as well as imaging spectrometry and lidar data.

Remote Sensing Archives – An overview of online resources for lidar data

Previous posts on data access have focused on general resources for obtaining remote sensing imagery – Getting your hands on all that imagery – and specific resources related to imaging spectrometry – A review of online resources for hyperspectral imagery. To add to this compendium of data resources, the following includes an overview of online archives for lidar data.

USGS lidar Mount St Helens

Lidar image of Mount St. Helens (courtesy USGS)

Lidar (light detection and ranging), also commonly referred to as LiDAR or LIDAR, is an “active” remote sensing technology, whereby laser pulses are used to illuminate a surface and the reflected return signals from these pulses are used to indicate the range (distance) to that surface. When combined with positional information and other data recorded by the airborne system, lidar produces a three-dimensional representation of the surface and the objects on that surface. Lidar technology can be utilized for terrestrial applications, e.g. topography, vegetation canopy height and infrastructure surveys, as well as aquatic applications, e.g. bathymetry and coastal geomorphology.

Below is an overview of archives that contain lidar data products and resources:

  • CLICK (Center for LIDAR Information Coordination and Knowledge) provides links to different publically available USGS lidar resources, including EAARL, the National Elevation Dataset and EarthExplorer. The CLICK website also hosts a searchable database of lidar publications and an extensive list of links to relevant websites for companies and academic institutions using lidar data in their work.
  • EAARL (Experimental Advanced Airborne Research Lidar) is an airborne sensor system that has the capacity to seamlessly measure both submerged bathymetric surfaces and adjacent terrestrial topography. By selecting the “Data” tab on the EAARL website, and then following links to specific surveys, users can view acquisition areas using Google Maps and access data as ASCII xyz files, GeoTIFFs and LAS files (a standardized lidar data exchange format).
  • NED (National Elevation Dataset) is the USGS seamless elevation data product for the United States and its territorial islands. NED is compiled using the best available data for any given area, where the highest resolution and most accurate of which is derived from lidar data and digital photogrammetry. NED data are available through the National Map Viewer in a variety of formats, including ArcGRID, GeoTIFF, BIL and GridFloat. However, to access the actual lidar data, and not just the resulting integrated products, users need to visit EarthExplorer.
  • EarthExplorer is a consolidated data discovery portal for the USGS data archives, which includes airborne and satellite imagery, as well as various derived image products. EarthExplorer allows users to search by geographic area, date range, feature class and data type, and in most cases instantly download selected data. To access lidar data, which are provided as LAS files, simply select the lidar checkbox under the Data Sets tab as part of your search criteria.
  • JALBTCX (Joint Airborne Lidar Bathymetry Technical Center of Expertise) performs data collection and processing for the U.S. Army Corps of Engineers, the U.S. Naval Meteorology and Oceanography Command and NOAA. The JALBTCX website includes a list of relevant lidar publications, a description of the National Coastal Mapping Program, and a link to data access via NOAA’s Digital Coast.
  • Digital Coast is a service provided by NOAA’s Coastal Services Center that integrates coastal data accessibility with software tools, technology training and success stories. Of the 950 data layers currently listed in the Digital Coast archive, lidar data represents nearly half of the available products. Searching for lidar data can be achieved using the Data Access Viewer and selecting “elevation” as the data type in your search, or by following the “Data” tab on the Digital Coast home page and entering “lidar” for the search criteria. The data is available in a variety of data formats, including ASCII xyz, LAS, LAZ, GeoTIFF and ASCII Grid, among others.
  • NCALM (National Center for Airborne Laser Mapping) is a multi-university partnership funded by the U.S. National Science Foundation, whose mission is to provide community access to high quality lidar data and support scientific research in airborne laser mapping. Data is accessible through the OpenTopography portal, either in KML format for display in Google Earth, as pre-processed DEM products, or as lidar point clouds in ASCII and LAS formats.

Lidar can be useful on its own, e.g. topography and bathymetry, and can also be merged with other remote sensing data, such as multispectral and hyperspectral imagery, to provide valuable three-dimensional information as input for further analysis. For example, lidar derived bathymetry can be used as input to improve hyperspectral models of submerged environments in the coastal zone. There has also been more widespread use of full-waveform lidar, which provides increased capacity to discriminate surface characteristics and ground features, as well as increased use of lidar return intensity, which can be used to generate a grayscale image of the surface.

What is readily apparent is that as the technology continues to improve, data acquisition becomes more cost effective, and data availability increases, lidar will play an important role in more and more remote sensing investigations.

VISualize 2013 – Global change and environmental monitoring

HySpeed Computing is honored to be co-sponsoring VISualize 2013, the annual conference hosted by Exelis Visual Information Solutions that brings together thought leaders in the geosciences to discuss the latest trends in remote sensing. The focus of this year’s conference is “Connecting the Community to Discuss Global Change and Environmental Monitoring.” The event is being held at the World Wildlife Fund conference center in Washington, DC from 11-13 June 2013.

HySpeed Computing president Dr. James Goodman will be attending VISualize and presenting a talk on the “Power of Community Data Sharing.” The presentation will explore the status of data sharing in the remote sensing community and discuss how you can benefit and get involved.

The conference’s keynote address will be presented by Dr. Jim Irons, Associate Deputy Director for Atmospheres in the Earth Sciences Division at NASA Goddard Space Flight Center (GSFC) and Project Scientist for the NASA Landsat Data Continuity Mission (LDCM). Dr. Irons will be discussing some of the history of the LDCM mission, and what we should expect now that Landsat 8 is operational and delivering data to the science community. We are looking forward to hearing what he has to say, as well as engaging with all the other speakers and attendees. Hope to see you there.

Here are some other upcoming remote sensing conferences later this year that may also be of interest:

WHISPERS: Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 25-28 June 2013, Gainesville, FL, USA, http://www.ieee-whispers.com/

ESRI: International User Conference, 8-12 July 2013, San Diego, CA, USA, http://www.esri.com/events/user-conference

IGARSS: International Geoscience and Remote Sensing Symposium, 21-26 July 2013, Melbourne, Australia, http://www.igarss2013.org/

SPIE: Remote Sensing, 23-26 September 2013, Dresden, Germany, http://spie.org/x6262.xml

HyPhoon is coming!

HyPhoon

HySpeed computing is proud to announce the coming launch of HyPhoon:

  • A gateway for the access and exchange of datasets, applications and knowledge.
  • A pathway for you to expand your impact and extend your community outreach.
  • A framework for the development and deployment of scientific applications.
  • A resource for obtaining and sharing geospatial datasets.
  • A mechanism for improved technology transfer.
  • A marketplace for scientific computing.

The initial HyPhoon release, coming soon in mid-2013, will focus on providing the community with free and open access to remote sensing datasets. This data will be available for the community to use in research projects, class assignments, algorithm development, application testing and validation, and in some cases also commercial applications. In other words, in the spirit of encouraging innovation, these datasets are offered as a community resource and open to your creativity. We look forward to seeing what you accomplish.

We’ll be announcing the official HyPhoon release here, so stay tuned to be the first to access the data as soon as it becomes available!

Our objective when developing these datasets has been to focus on quality rather than any predefined set of content requirements. Thus, dataset contents are variable. Many of the datasets include a combination of imagery, validation data, and example output. Some datasets include imagery of the same area acquired using different sensors, different resolutions, or different dates. And other datasets simply include unique image examples.

The datasets originate largely from the community itself. In some cases data also originates from public domain repositories as well as from commercial image providers. We are also interested in hearing your thoughts on new datasets that will benefit the community. Contact us with your ideas and if our review team approves the project then we will work with you to add your data to the gateway.

Beyond datasets, HyPhoon will also soon include a marketplace for community members to access advanced algorithms, and sell user-created applications. Are you a scientist with an innovative new algorithm? Are you a developer who can help transform research code into user applications? Are you working in the application domain and have ideas for algorithms that would benefit your work? Are you looking to reach a larger audience and expand your impact on the community? If so, we encourage you to get involved in our community.

For more on HySpeed Computing: www.hyspeedcomputing.com

The National Strategy for Earth Observation – Data management and societal benefits

White House OSTP

Office of Science and Technology Policy

Earlier this month the U.S. National Science and Technology Council released its report on the National Strategy for Civil Earth Observations. This is the first step towards building a National roadmap for the more efficient utilization and management of U.S. Earth observing resources.

Current U.S. capabilities in Earth observation, as summarized in the report, are distributed across more than 100 different programs, including those at both Federal agencies and various non-Federal organizations (e.g., state and local governments, academic institutions, and commercial companies). This extends far beyond just the well-known satellite programs operated by NASA and NOAA, encompassing a variety of other satellite and airborne missions being conducted around the country, as well as a host of other land- and water-based observing systems. From a National perspective this represents not just a complex array of programs and organizations to manage, but also an increasingly voluminous collection of data products and information to store and make available for use.

With an objective towards improving the overall management and utilization of the various Earth observing resources, the National Strategy outlines two primary organizational elements. The first element addresses a “policy framework” for prioritizing investments in observing systems that support specified “societal benefit areas,” and the second element speaks to the need for improved methods and policies for data management and information dissemination.

The National Strategy also lays the foundation for ultimately developing a National Plan for Civil Earth Observations, with initial publication targeted for fiscal year 2014 and subsequent versions to be repeated every three years thereafter. As indicated by its title, the National Plan will provide the practical details and fundamental information needed to implement the various Earth observing objectives. Additionally, by periodically revisiting and reassessing technologic capabilities and societal needs, the “approach of routine assessment, improved data management, and coordinated planning is designed to enable stable, continuous, and coordinated Earth-observation capabilities for the benefit of society.”

The overall motivation behind the National Strategy and National Plan is the recognized societal importance of Earth observation. Specifically, “Earth observations provide the indispensable foundation for meeting the Federal Government’s long-term sustainability objectives and advancing U.S. social, environmental, and economic well-being.” With that in mind, the National Strategy specifies twelve key “societal benefit areas”: agriculture and forestry, biodiversity, climate, disasters, ecosystems, energy and mineral resources, human health, ocean and coastal resources and ecosystems, space weather, transportation, water resources, weather, and reference measurements. Also deemed relevant are the various technology developments that span across all focus areas, such as advances in sensor systems, data processing, algorithm development, data discovery tools, and information portals.

The National Strategy additionally presents a comprehensive outline for a unified data management framework, which sets the fundamental “expectations and requirements for Federal agencies involved in the collection, processing, stewardship, and dissemination of Earth-observation data.” The framework addresses needs across the entire data life cycle, beginning with the planning stages of data collection, progressing through data organization and formatting standards, and extending to data accessibility and long-term data stewardship. Also included is the need to provide full and open data access to all interested users, as well as optimize interoperability, thereby facilitating the more efficient exchange of data and information products across the entire community.

With this National Strategy, the U.S. is defining a unified vision for integrating existing resources and directing future investments in Earth observation. We are looking forward to reading the upcoming National Plan, which is targeted for release later this year.

To access a copy of the National Strategy report, visit the Office of Science and Technology Policy: http://www.whitehouse.gov/administration/eop/ostp

Remote Sensing Data Access – A review of online resources for hyperspectral imagery

Hyperspectral CubeIn our previous post – Remote Sensing Data Archives – we explored some of the many general online data discovery tools for obtaining remote sensing imagery. We now sharpen our focus to the field of hyperspectral remote sensing, aka imaging spectrometry, and delve into resources for accessing this particularly versatile type of imagery.

Hyperspectral imaging emerged on the remote sensing scene in the 1980s, originating at the Jet Propulsion Laboratory (JPL) with the development and deployment of the Airborne Imaging Spectrometer (AIS), followed soon thereafter by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Since then hyperspectral imaging has evolved into a robust remote sensing discipline, with satellite and airborne sensors contributing to numerous applications in Earth observation, and other similarly sophisticated sensors being used for missions to the moon and Mars.

The premise behind hyperspectral imaging is that these sensors measure numerous, relatively narrow, contiguous portions of the electromagnetic spectrum, thereby providing detailed spectral information on how electromagnetic energy is reflected (or emitted) from a surface. To give this some perspective and provide an example, this can equate to measuring the visible portion of the spectrum using 50 or more narrow bands as opposed to three broad bands (i.e., red, green and blue) that we typically see with cameras and our eyes. Because objects (plants, soil, water, buildings, roads, etc…) reflect light differently as a function of their composition and structure, this enhanced spectral resolution offers more information with which to identify and map features on the Earth’s surface.

For those interested in hyperspectral remote sensing, and curious to see what can be achieved using this type of data, let’s look at some of the archives that are available:

  • Hyperion – The Hyperion sensor (220 bands; 400-2500nm; 30m resolution) is located on NASA’s EO-1 satellite, and although deployed in 2000 as part of a one-year demonstration mission, the satellite and its onboard sensors have shown remarkable stamina, continuing to collect data today. Archive data from Hyperion are available through both Earth Explorer and GloVis, and new data can be requested through an online Data Acquisition Request (DAR).
  • HICO – The Hyperspectral Imager for Coastal Ocean sensor (128 bands; 350-1080nm; 90m resolution) was installed on the International Space Station (ISS) in 2009 and is uniquely configured for the acquisition of ‘dark’ targets, specifically coastal aquatic areas. The sensor was initially developed and sponsored by the Office of Naval Research, with continuing support now provided through NASA’s ISS Program. Archive data from HICO, as well as requests for new data, are available through the HICO website hosted by Oregon State University; however, interested users must first submit a short proposal to become part of the HICO user community.
  • CHRIS – The Compact High Resolution Imaging Spectrometer (18-62 bands; 410-1020nm; 17-34m resolution) is the main payload on ESA’s Proba-1 satellite, which was launched in 2001. As with the EO-1 satellite, Proba-1 was only intended to serve as a short-lived technology demonstrator, but has managed to continue collecting valuable science data for more than a decade. Data from CHRIS are available to registered users, obtained via submittal and acceptance of a project proposal, through ESA’s Third Party Missions portfolio on Earthnet Online.
  • AVIRIS – The Airborne Visible Infrared Imaging Spectrometer (224 bands; 400-2500nm, 4-20m resolution) has been supporting hyperspectral projects for more than two decades, and can be credited as a true pioneer in the field. AVIRIS is most commonly flown onboard a Twin Otter turboprop or ER-2 jet, but has also been configured to operate from several other airborne platforms. Images from 2006-2011 are available through the AVIRIS Flight Data Locator, with plans to soon expand this archive to include additional imagery from 1992-2005 (currently available through request from JPL).
  • NEON – The National Ecological Observatory Network is a continental-scale network of 60 observation sites located across the United States, where a standardized set of field and airborne data are being collected to support ecological research. Remote sensing data are being acquired via the Airborne Observation Platform, which includes a high-resolution digital camera, waveform LiDAR, and imaging spectrometer. The NEON project is adapting an open data policy, but data acquisition and distribution tools are currently still in development. Thus, initial “prototype” data, which includes a sampling of hyperspectral imagery, are being made available through the NEON Prototype Data Sharing (PDS) system.
  • TERN – The Terrestrial Ecosystem Research Network is an Australian equivalent of NEON, providing a distributed network of observation facilities, datasets, map products and analysis tools to support Australian ecosystem science. Within this larger project is the AusCover facility, which leads the remote sensing image acquisition and field validation efforts for TERN. Current hyperspectral datasets available through AusCover include both airborne data and a comprehensive collection of Hyperion imagery. Data are accessible through the TERN Data Discovery Portal and the AusCover Visualization Portal.

These aren’t the only hyperspectral instruments in operation. There are new instruments, such as the Next Generation AVIRIS (AVIRIS-NG), Hyperspectral Thermal Emission Spectrometer (HyTES) and Portable Remote Imaging Spectrometer (PRISM), which all recently conducted their first science missions in 2012. There are a growing number of hyperspectral programs and instruments operated by government agencies and universities, such as the NASA Ames Research Center and the Carnegie Airborne Observatory (CAO). There are various airborne sensors operated or produced by commercial organizations, such as the Galileo Group, SpecTIR, HyVista and ITRES. And there are also a number of new satellite-based sensors on the horizon, including HyspIRI (NASA), EnMAP (Germany), PRISMA (Italy) and HISUI (Japan).

It’s an exciting field, with substantial growth in both sensor technology and analysis methods continuing to emerge. As the data becomes more and more available, so too does the potential for more researchers to get involved and new applications to be developed.